126 research outputs found

    Origin of a metamorphosed lithic clast in CM chondrite Grove Mountains 021536

    Get PDF
    A metamorphosed lithic clast was discovered in the CM chondrite Grove Mountains 021536, which was collected in the Antarctica by the Chinese Antarctic Research Exploration team. The lithic clast is composed mainly of Fe-rich olivine (Fo62) with minor diopside (Fs_(9.7–11.1)Wo_(48.3–51.6)), plagioclase (An_(43–46.5)), nepheline, merrillite, Al-rich chromite (21.8 wt% Al_2O_3; 4.43 wt% TiO_2), and pentlandite. Δ^(17)O values of olivine in the lithic clast vary from −3.9‰ to −0.8‰. Mineral compositions and oxygen isotopic compositions of olivine suggest that the lithic clast has an exotic source different from the CM chondrite parent body. The clast could be derived from strong thermal metamorphism of pre-existing chondrule that has experienced low-temperature anhydrous alteration. The lithic clast is similar in mineral assemblage and chemistry to a few clasts observed in oxidized CV3 chondrites (Mokoia and Yamato-86009) and might have been derived from the interior of the primitive CV asteroid. The apparent lack of hydration in the lithic clast indicates that the clast accreted into the CM chondrite after hydration of the CM components

    Current application of metabolomics in the elucidation of processing mechanisms used in Chinese materia medica: A review

    Get PDF
    Processing, a key characteristic of traditional Chinese medicine (TCM), enhances the efficacy and safety of Chinese materia medica (CMM) in clinics. It plays an important role in TCM. Studies on processing mechanisms involved in CMM promote the development of TCM. However, most studies on the mechanisms used for processing CMM do not reflect the holistic theory of TCM because they are based only on analysis of some specific  chemical components and biochemical indices which do not support the TCM characteristics of network target and multicomponent therapeutics. Fortunately, the perspective of systems biology is consistent with the holistic theory of TCM. Metabolomics, a key tool in systems biology, has been widely used to investigate the processing mechanism of CMM for many years. In this work, current applications of metabolomics in elucidating  mechanisms used for processing of CMM were systematically reviewed and discussed in terms of changes in chemical components, toxicity and efficacy of CMM before and after processing. This work provides researchers a clear and concise reference on the current application of  metabolomics in investigation of mechanisms used in processing of CMM. Moreover, this work provides a guide on how to investigate the  mechanisms used in processing of CMM, based on metabolomics. Keywords: Chinese materia medica, Processing mechanism, Metabolomics, Holistic theor

    Water, fluorine, and sulfur concentrations in the lunar mantle

    Get PDF
    The concentrations of volatile elements in the moon have important implications for the formation of the earth–moon system. There is currently a debate regarding the water content of the lunar mantle: Authors studying H_2O in lunar pyroclastic glass beads and in olivine-hosted melt inclusions in such pyroclastic samples and in plagioclase crystals in lunar highland anorthosites infer hundreds of ppm H_2O in the lunar mantle. In contrast, authors studying Zn/Fe ratios infer that the H_2O concentration in the lunar mantle is ≤1 ppm, and they argue that the glassy lunar basalts are a local anomaly. We contribute to a resolution of the debate by a broader examination of the concentrations of H_2O and other volatile components in olivine-hosted melt inclusions in a wider range of lunar mare basalts, including crystalline melt inclusions that are homogenized by melting in the laboratory. We find that F, Cl, and S concentrations in various lunar melt inclusions (including those in glassy lunar basalts) are similar to one another, and previously studied glassy lunar basalts are not a local anomaly in terms of these volatile concentrations. Furthermore, we estimate the pre-degassing H_2O/Ce, F/Nd, and S/Dy ratios of mare basaltic magmas to be at least 64, 4.0 and 100 respectively. These ratios are lower than those of primitive earth mantle by a factor of 3, 5, and 4 respectively. The depletion factors of these volatile elements relative to the earth's primitive mantle do not correlate strongly with volatility or bonding energy, and indeed they are roughly constant and similar to those of other volatile elements such as Li, Cs, Rb and K. This approximate constancy of volatile depletion in the moon relative to the earth can be explained by assuming that both the earth and the moon acquired volatiles from a similar source or by a similar mechanism but the earth was more efficient in acquiring the volatiles. We estimate the H_2O, F and S concentrations in the primitive lunar mantle source to be at least 110, 5.3, and 70 ppm, respectively – similar to or slightly lower than those in terrestrial MORB mantle

    Absolute and relative POD of LEO satellites in formation flying: Undifferenced and uncombined approach

    Get PDF
    Absolute or relative precise orbit determination (POD) is an essential prerequisite for many low earth orbit (LEO) missions. The POD of LEO satellites typically relays on processing the onboard global navigation satellite system (GNSS) measurements. The absolute POD is usually based on an ionosphere-free (IF) combination, and currently, integer ambiguity resolution (IAR) can be achieved only when external GNSS satellite phase bias (SPB) products are used. The use of these products is not flexible in multi-frequency/multi-constellation scenarios and is difficult to achieve in real-time missions. For relative POD, the double-differenced (DD) with IAR is the most general method. However, the differencing process amplifies observation noise and loses the opportunity to impose dynamic constraints on some eliminated parameters. In this contribution, based on the use of undifferenced and uncombined (UDUC) observations, a new model for both absolute and relative POD is proposed. In this model, the ambiguities of common-view satellites are constructed into DD form, thus IAR can be achieved without any external SPB products. Working with the UDUC observations, multi-frequency scenarios can be easily applied, and residuals can be separated for each frequency. In addition, with precise GNSS satellite clock/orbit products, both the absolute and relative orbits can be derived, which supports absolute and relative LEO POD. Based on onboard GPS observations of T-A and T-B satellites in formation flying, the performance of the UDUC POD model with DD ambiguity was evaluated. With the UDUC algorithm and IAR, the proposed model presented a consistency of 2.8–3.8 cm in 3D with the reference orbits, and the orbit difference was reduced by 16.3% and 10.6% for T-A and T-B compared with the IF-based POD, respectively. In addition, the relative orbit of the two satellites derived from the proposed model showed a consistency of 1.1–1.5 mm, which proved the feasibility of the UDUC POD model with DD ambiguity for formation flying missions

    Sims Analysis of Water Abundance and Hydrogen Isotope in Lunar Highland Plagioclase

    Get PDF
    The detection of indigenous water in mare basaltic glass beads has challenged the view established since the Apollo era of a "dry" Moon. Since this discovery, measurements of water in lunar apatite, olivine-hosted melt inclusions, agglutinates, and nominally anhydrous minerals have confirmed that lunar igneous materials contain water, implying that some parts of lunar mantle may have as much water as Earth's upper mantle. The interpretation of hydrogen (H) isotopes in lunar samples, however, is controversial. The large variation of H isotope ratios in lunar apatite (delta Deuterium = -202 to +1010 per mille) has been taken as evidence that water in the lunar interior comes from the lunar mantle, solar wind protons, and/or comets. The very low deuterium/H ratios in lunar agglutinates indicate that solar wind protons have contributed to their hydrogen content. Conversely, H isotopes in lunar volcanic glass beads and olivine-hosted melt inclusions being similar to those of common terrestrial igneous rocks, suggest a common origin for water in both Earth and Moon. Lunar water could be inherited from carbonaceous chondrites, consistent with the model of late accretion of chondrite-type materials to the Moon as proposed by. One complication about the sources of lunar water, is that geologic processes (e.g., late accretion and magmatic degassing) may have modified the H isotope signatures of lunar materials. Recent FTIR analyses have shown that plagioclases in lunar ferroan anorthosite contain approximately 6 ppm H2O. So far, ferroan anorthosite is the only available lithology that is believed to be a primary product of the lunar magma ocean (LMO). A possible consequence is that the LMO could have contained up to approximately 320 ppm H2O. Here we examine the possible sources of water in the LMO through measurements of water abundances and H isotopes in plagioclase of two ferroan anorthosites and one troctolite from lunar highlands

    Superior energy-storage properties in (Pb,La)(Zr,Sn,Ti)O-3 antiferroelectric ceramics with appropriate La content

    Get PDF
    Antiferroelectric (AFE) ceramics based on Pb(Zr,Sn,Ti)O3 (PZST) have shown great potential for applications in pulsed power capacitors because of their fast charge-discharge rates (on the order of nanoseconds). However, to date, it has been proven very difficult to simultaneously obtain large recoverable energy densities Wre and high energy efficiencies η in one type of ceramic, which limits the range of applications of these materials. Addressing this problem requires the development of ceramic materials that simultaneously offer a large ferroelectric-antiferroelectric (FE-AFE) phase-switching electric field EA, high electric breakdown strength Eb, and narrow polarization-electric field (P-E) hysteresis loops. In this work, via doping of La3+ into (Pb1-1.5xLax)(Zr0.5Sn0.43Ti0.07)O3 AFE ceramics, large EA and Eb due to respectively enhanced AFE phase stability and reduced electric conductivity, and slimmer hysteresis loops resulting from the appearance of the relaxor AFE state, are successfully obtained, and thus leading to great improvement of the Wre and η. The most superior energy storage properties are obtained in the 3 mol% La3+-doped (Pb1-1.5xLax)(Zr0.5Sn0.43Ti0.07)O3 AFE ceramic, which simultaneously exhibits at room temperature a large Wre of 4.2 J/cm3 and a high η of 78%, being respectively 2.9 and 1.56 times those of (Pb1-1.5xLax)(Zr0.5Sn0.43Ti0.07)O3 AFE ceramics with x = 0 (Wre = 1.45 J/cm3, η = 50%) and also being superior to many previously published results. Besides, both Wre and η change very little in the temperature range of 25–125 °C. The large Wre, high η, and their good temperature stability make the Pb0.955La0.03(Zr0.5Sn0.43Ti0.07)O3 AFE ceramic attractive for preparing high pulsed power capacitors useable in various conditions

    A heterogeneous lunar interior for hydrogen isotopes as revealed by the lunar highlands samples

    Get PDF
    Knowing the amount and timing of water incorporation into the Moon has fundamental implications for our understanding of how the Earth–Moon system formed. Water has been detected in lunar samples but its abundance, distribution and origin are debated. To address these issues, we report water concentrations and hydrogen isotope ratios obtained by secondary ion mass spectrometry (SIMS) of plagioclase from ferroan anorthosites (FANs), the only available lithology thought to have crystallized directly from the lunar magma ocean (LMO). The measured water contents are consistent with previous results by Fourier transform infrared spectroscopy (FTIR). Combined with literature data, δD values of lunar igneous materials least-degassed at the time of their crystallization range from −280 to +310‰, the latter value being that of FAN 60015 corrected for cosmic ray exposure. We interpret these results as hydrogen isotopes being fractionated during degassing of molecular hydrogen (H_2) in the LMO, starting with the magmatic δD value of primordial water at the beginning of LMO being about −280‰, evolving to about +310‰ at the time of anorthite crystallization, i.e. during the formation of the primary lunar crust. The degassing of hydrogen in the LMO is consistent with those of other volatile elements. The wide range of δD values observed in lunar igneous rocks could be due to either various degrees of mixing of the different mantle end members, or from a range of mantle sources that were degassed to different degrees during magma evolution. Degassing of the LMO is a viable mechanism that resulted in a heterogeneous lunar interior for hydrogen isotopes

    Direct measurement of hydroxyl in the lunar regolith and the origin of lunar surface water

    Get PDF
    Remote sensing discoveries of hydroxyl and water on the lunar surface have reshaped our view of the distribution of water and related compounds on airless bodies such as the Moon. The origin of this surface water is unclear, but it has been suggested that hydroxyl in the lunar regolith can result from the implantation of hydrogen ions by the solar wind. Here we present Fourier transform infrared spectroscopy and secondary ion mass spectrometry analyses of Apollo samples that reveal the presence of significant amounts of hydroxyl in glasses formed in the lunar regolith by micrometeorite impacts. Hydrogen isotope compositions of these glasses suggest that some of the observed hydroxyl is derived from solar wind sources. Our findings imply that ice in polar cold traps could contain hydrogen atoms ultimately derived from the solar wind, as predicted by early theoretical models of water stability on the lunar surface. We suggest that a similar mechanism may contribute to hydroxyl on the surfaces of other airless terrestrial bodies where the solar wind directly interacts with the surface, such as Mercury and the asteroid 4-Vesta
    corecore